Journal of Organometallic Chemistry, 188 (1980) 97–107 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ON THE NATURE AND REACTIVITY OF Cp₂TiCH₃

E. KLEI and J.H. TEUBEN

Laboratorium voor Anorganische Chemie, Rijksuniversiteit Groningen, Nijenborgh 16, 9747 AG Groningen (The Netherlands)

(Received September 4th, 1979)

Summary

Reaction of Cp₂TiCl with 1 eq. of CH₃Li in ether at -78° C yields the green, thermally unstable, trivalent Ti compound Cp₂TiCH₃. EPR studies on ether solutions of this compound reveal it to be present in solution as the adduct Cp₂TiCH₃ · OEt₂ · By reaction with DCl Cp₂TiCl₂ and CH₃D are formed. Reaction with 2,6 xylylisocyanide leads to insertion of the isocyanide into the Ti-CH₃ bond, while reaction with CS₂ yields the disproportionation products Cp₂-Ti(CH₃)₂ and Cp₂TiCS₂. Thermal decomposition studies on deuteriated analogues confirm the Ti-CH₃ structure. The rate determining step in the decomposition process is the abstraction of a Cp proton by the methyl group. Under nitrogen the decomposition reaction yields NH₃ and N₂H₄ in amounts of up to 0.28 moles N/Ti. Some catalytic applications of Cp₂TiCH₃ for hydrogenation and isomerisation of olefins and acetylenes are briefly mentioned.

Introduction

The paramagnetic compounds Cp_2TiR ($Cp = \eta^5-C_5H_5$, R = aryl) show very interesting activating properties towards donor molecules, such as molecular nitrogen [1], cyanides [2a,b], isocyanides [3] and carbon monoxide [4]. Even stronger activating properties can be expected for the compounds $Cp_2Tialkyl$, since these are expected to possess a higher electron density at the metal. A few compounds $Cp_2Tialkyl$ have been isolated previously viz. $Cp_2Tibenzyl$ [5], Cp_2 -Ti $CH_2C(CH_3)_3$ [6] and $Cp_2TiCH_2Si(CH_3)_3$ [7], but no particular activating properties were reported. However, attempts to prepare Cp_2TiR with R = Me, Et, i-Pr, n-Bu, t-Bu, n-C₅H₁₁ were unsuccessful [6].

We decided to try again to prepare Cp_2TiCH_3 and study its activating properties. We selected Cp_2TiCH_3 mainly for steric reasons: complexation of a substrate molecule to be activated to the Ti centre should be easier than for other $Cp_2Tialkyl$ compounds. Moreover, Cp_2TiCH_3 is expected to show a higher thermal stability than other n-alkyl derivatives because of the lack of β - and γ -hydrogens.

 Cp_2TiCH_3 has been assumed to be formed in the electrochemical reduction of $Cp_2TiCl(CH_3)$ [8], and also during the photochemical decomposition of Cp_2 - $Ti(CH_3)_2$ and $Cp_2TiCl(CH_3)$ [9]. Its existence was also inferred from EPR studies on mixtures of Cp_2TiCl and CH_3MgI in THF [10]. In none of these cases, however, were attempts to isolate or further characterize Cp_2TiCH_3 reported. In recent work, Holton et al. [11] suggest that reaction of Cp_2TiCl with CH_3Li in ether at $-78^{\circ}C$ gives $(Cp_2TiCH_3)_2$, but attempts to isolate the compound were unsuccessful and no properties were described.

We decided to prepare Cp_2TiCH_3 from Cp_2TiCl and CH_3Li at low temperature and try to stabilize it by the addition of appropriate ligands. Phosphines such as diphenyl, o-tolyl phosphine or sulphides like 2-methyl thiophene were not suitable ligands, and no characterizable products could be isolated. In reaction with 2-substituted pyridines and quinolines, however, α -metallation of the ligands was observed; this C—H activation reaction is assumed to proceed via the adduct $CpTiCH_3 \cdot L$ (L = 2-substituted pyridine or quinoline) [12].

In this report we describe our studies on the product formed in the low-temperature reaction of Cp_2TiCl and CH_3Li in ether.

Results and discussion

Reaction of Cp₂TiCl with 1 eq. of CH₃Li in ether at -78° C for about 10 minutes gives a green solution and a white precipitate. The solution (0.1 *M*) is stable at -78° C, but decomposes above about -50° C with formation of methane (0.93 moles CH₄/Ti) and a purple solution, which on further warming changes into a dark-brown, moderately soluble product.

Attempts to isolate Cp_2TiCH_3 , or the adducts $Cp_2TiCH_3 \cdot L$ (L = ether, THF, diphenyl *o*-tolylphosphine, 2-methylthiophene, 2,6-xylylisocyanide, 2-substituted pyridines or quinolines) failed, although the presence of these ligands does stabilize the solution.

Elemental analyses of the green solution show that it contains the expected amount of Ti, and only traces of Li (and Mg if Cp_2TiCl is prepared in situ from Cp_2TiCl_2 and i- C_3H_7MgCl , see experimental). This clearly indicates that no methyl or halogen bridged binuclear Ti-Mg or Ti-Li compounds or complexes of the type $[Cp_2Ti(CH_3)_2]^-Li^+$ are formed.

Spectroscopic characterization

The UV-VS spectrum of the green solution at -75° C shows a low-intensity absorption at 610 nm resulting the absorptions at 646 nm ($\epsilon = 50$) for Cp₂Ti-CH₂C(CH₃)₃ [6] and 632 nm ($\epsilon = 40$) for Cp₂TiCH₂Si(CH₃)₃ [7]. This suggests that a similar product is formed in the reaction described here. The EPR spectrum of the green solution at -80° C shows a singlet at g = 1.980 as depicted in Fig. 1a. Upon addition of THF (-80° C) this signal disappears completely and immediately a quartet signal appears (g = 1.981, a 4.4 G, Fig. 1b). This quartet is very similar to that reported by Brintzinger, and ascribed to Cp₂TiCH₃ · THF [10]. We conclude that in our case Cp₂TiCH₃ · THF is formed from the ether adduct Cp₂TiCH₃ · OEt₂, which gives the first observed singlet. Similarly,

Fig. 1. EPR spectra (-80°C; DPPH external reference) a) $Cp_2TiCH_3 \cdot OEt_2$ (g = 1.980) b) $Cp_2TiCH_3 \cdot THF$ (g = 1.981, a 4.4 G) c) $Cp_2TiCH_3 \cdot PPh_3$ (g = 1.999, a 18.9 and 6.0 G).

addition of PPh₃ to this ether solution leads to the formation of Cp_2TiCH_3 . PPh₃ which shows two partly overlapping quartet signals at g = 1.999 due to a Ti-P coupling (a 18.9 G) and a Ti-H coupling (a 6.0 G; Fig. 1c).

It is unlikely that molecules of Cp_2TiCH_3 exist as such in ether solution since they would be coordinatively highly unsaturated and are expected to relieve this unsaturation, either by forming an adduct or by dimerisation to $(Cp_2Ti-CH_3)_2$. The latter dimer is believed to be EPR inactive because of Ti—Ti interaction. Monomeric Cp_2TiCH_3 is expected to show a singlet at g = 1.96-1.97comparable to the values of related compounds Cp_2TiR (R = $CH_2C(CH_3)_3$, g =1.960 [6]; R = $CH_2C_6H_5$, g = 1.966 [5], R = $CH\{Si(CH_3)_3\}_2$, g = 1.966 [13]). No signals in this region are observed in our case. We believe, therefore, that in ether solution the compound exists as the adduct $Cp_2TiCH_3 \cdot OEt_2$, although some dimerisation cannot be excluded.

The intensity of the singlet signal in ether solution decreases on warming, but above about -50° C a new singlet appears at g = 1.981, which decays slightly upon standing at room temperature. Although the quartet signal of Cp₂TiCH₃ · THF is thermally more stable than the signal of Cp₂TiCH₃ · OEt₂, it also disappears on warming and is again replaced by a singlet signal at g =1.981. This is in contrast with the observations of Brintzinger who reported that in pure THF the quartet is stable [10]. It is quite possible that in the solutions under discussion an equilibrium exists:

 $Cp_2TiCH_3 \cdot THF + Et_2O \neq Cp_2TiCH_3 \cdot OEt_2 + THF$

and that decomposition of the ether adduct is responsible for the decay of Cp_2 -TiCH₃ · THF. Samuel et al. reported the generation of Cp_2 TiCH₃ by photochemical decomposition of Cp_2 Ti(CH₃)₂ in toluene [9]. The product thus prepared shows a singlet at g = 1.980, exactly the value as found for our Cp_2 Ti-CH₃ · OEt₂. It is not clear whether identical Cp_2 TiCH₃ species are concerned, since the EPR signal of the photochemically prepared compound is reported to be stable at room temperature, which is in contrast to our observations. It is possible, however, that Cp_2TiCH_3 is much more stable in toluene than in the presence of donor ligands such as ether or THF. The observations by Holton et al. on the stability of the related complex $Cp_2Ti(\mu-CH_3)_2Al(CH_3)_2$ do not seem to support this view, however [11].

Chemical characterisation

Reaction of the green solution of Cp_2TiCH_3 with an excess of HCl/ether yields Cp_2TiCl_2 (90%) and CH_4 in a quantitative yield according to

 $Cp_2TiCH_3 + HCl \rightarrow Cp_2TiCl + CH_4$

$$Cp_2TiCl + HCl (excess) \rightarrow Cp_2TiCl_2 + \frac{1}{2}H_2$$

which clearly indicates retention of the Cp_2Ti structure. Reaction with DCl/ ether results in the formation of CH_3D as the only deuteriated methane. The absence of CH_2D_2 and CHD_3 excludes the presence of Ti—methylene or Ti—carbyne species. Mass spectrometry shows that with excess DCl no deuterium is incorporated in the Cp ligands.

Reaction with 2,6-xylylisocyanide

Reaction of Cp₂TiCH₃ with 2,6-xylylisocyanide in ether at -78° C results in the formation of the η^2 -iminoacyl compound Cp₂TiC(CH₃)=N-2,6(CH₃)₂C₆H₃ (Scheme 1). This reaction is similar to the insertion of isocyanides into the

SCHEME 1

Ti-C bond of Cp₂Tiaryl compounds [3]. The red-brown product is characterized by elemental analysis (Table 1), IR (Table 2) and molecular weight determination (monomeric, Table 2). The compound is stable up to about 140°C and is paramagnetic in solution, as expected for a Ti^{III} compound. Its IR spectrum shows, in addition to the characteristic η^{5} -C₅H₅ and phenyl absorptions,

TABLE 1

ANALYTICAL DATA FOR Cp2Ti-72-IMINOACYL COMPOUNDS

Compound	Yield (%)	Colour	Analysis (found (caled.) (%))		
			С	H	Ti
Cp ₂ TiC(CH ₃)=N-2,6-(CH ₃) ₂ C ₆ H ₃	10	red-brown	73.59(74.07)	7.14(6.83)	13.77(14.77
Cp2Ti(I)C(CH3)=N-2,6-(CH3)2C6H3	82	yellow		đ	
$Cp_2Ti(SC_6H_5)C(CH_3)=N-2,6-(CH_3)_2C_6H_3$	36	yellow	17.85(72.04)	6.48(6.28)	11.13(11.05

^a not obtained in sufficiently pure form.

the $\nu(CN)$ band at 1578 cm⁻¹ (free isocyanide 2115 cm⁻¹) which is comparable to the $\nu(CN)$ band at 1573 cm⁻¹ of the phenyl analogue Cp₂TiC(C₆H₅)=N-2,6-(CH₃)₂C₆H₃, a value that was assigned to a η^2 -coordination of the iminoacyl ligand [3]. The iminoacyl compound Cp₂TiC(CH₃)=N-2,6(CH₃)₂C₆H₃ with trivalent Ti is readily oxidized by C₆H₅SSC₆H₅ or I₂ to derivatives of tetravalent Ti in which the iminoacyl ligand is still η^2 -coordinated (Scheme 2). The yellow

SCHEME 2

diamagnetic compounds formed were characterized by elemental analyses (Table 1), IR (Table 2), ¹H NMR (Table 3) and ¹³C NMR (Fig. 2). The IR spectra show ν (CN) at 1677 cm⁻¹ for Cp₂Ti(I)C(CH₃)=N-2,6(CH₃)₂C₆H₃ and 1662 cm⁻¹ for Cp₂Ti(SC₆H₅)C(CH₃)=N-2,6(CH₃)₂C₆H₃ (Table 2). The presence of the methyl group is clearly shown in the ¹H and ¹³C NMR spectra (Table 3).

The --CH₃ absorption in the ¹H NMR spectrum is centred at δ 2.63 ppm for the iodine derivative and at δ 2.44 ppm for the -SC₆H₅ derivative. The ¹³C NMR spectrum of the latter compound is shown in Fig. 2. The resonance of the --CH₃ carbon atom of the Ti--C--CH₃ fragment is centred at 23.6 ppm (¹J(¹³C-¹H) 132 Hz). The Cp carbon atoms are found at 108.7 ppm whereas the iminoacyl carbon shows a low-field resonance signal at 231.2 ppm (²J(¹³C-¹H) 9 Hz). The phenyl carbon atoms are found in the range 122.5 ppm to 148.3 ppm.

Reaction with CS₂

TABLE 2

Reaction of Cp_2TiCH_3 with CS_2 in ether at $-78^{\circ}C$ results in the formation of

INFRARED AND PHYSICAL DATA FOR Cp2Ti-η ² -IMINOACYL COMPOUNDS					
Compound	Mol. weight ^a (calcd.)	Magn. ^b	DTA		$\frac{IR^{e}}{v(CN) (cm^{-1})}$
			endo (°C) ^C	exo (°C) ^d	
Cp ₂ TiC(CH ₃)=N-2,6-(CH ₃) ₂ C ₆ H ₃ Cp ₂ Ti(I)C(CH ₃)=N-2,6-(CH ₃) ₂ C ₆ H ₃ Cp ₂ Ti(SC ₆ H ₅)C(CH ₃)=N-2,6-(CH ₃) ₂ C ₆ H ₃	304(324)	paramagn. diamagn. diamagn.	88	142	1578 ^f 1677 1662

^a Cryoscopically in benzene. ^b In solution. ^c Reversible; melting point. ^d Irreversible; decomposition temperature. ^e KBr/nujol. ^f v(CN) in 2,6-xylylisocyanide 2115 cm⁻¹.

Compound	δ(Cp)	δ(Ti-C-CH3)	δ(CH ₃)	δ(fenyl-H)
	(ppm)	(ppm)	(ppm)	(ppm)
Cp ₂ Ti(I)C(CH ₃)=N-2,6-(CH ₃) ₂ C ₆ H ₃ ^a	5.87 (s, 10)	2.63 (s, 3)	2.07 (s, 6)	7.09 (s, 3)
Cp ₂ Ti(SC ₆ H ₅)C(CH ₃)=N-2,6-(CH ₃) ₂ C ₆ H ₃ ^l	5.58 (s, 10)	2.44 (s, 3)	2.09 (s, 6)	6.8–7.2 (m, 8)

¹H NMR SPECTRAL DATA OF TETRAVALENT Ti- η^2 -IMINOACYL COMPOUNDS

^a CD₃CN, TMS, 30°C. ^b CDCl₃, TMS, 30°C.

Cp₂Ti(CH₃)₂ (IR, NMR) and Cp₂TiCS₂ (IR [4]) in very high yields according to

 $2 \text{ Cp}_2\text{TiCH}_3 + \text{CS}_2 \rightarrow \text{Cp}_2\text{Ti}(\text{CH}_3)_2 + \text{Cp}_2\text{TiCS}_2$

Since a disproportionation reaction is thought to require a dimeric type of precursor [14], one might conclude that Cp_2TiCH_3 is present as a dimer. However addition to the reaction mixture of THF or even pyridine, ligands which yield ligand stabilized monomeric $Cp_2TiCH_3 \cdot L$, as mentioned above, does not affect the product formation.

The observations can be explained by assuming that the CS₂ ligand is initially (σ, π) bridging between two Cp₂TiCH₃ fragments, thus creating a "dimeric type" intermediate [15].

Thermal decomposition

0.1 *M* solutions of Cp_2TiCH_3 in ether (under Ar) decompose above about $-50^{\circ}C$ with formation of methane (0.93 mole CH_4/Ti) and a dark brown mixture. The decomposition temperature is concentration dependent: 0.01 *M* solutions decompose above about $-30^{\circ}C$.

Neither H_2 or other gaseous products in the C_2 — C_6 ranges are observed from this decomposition reaction. Therefore homolytic fission of the Ti—CH₃ bond

Fig. 2. Decoupled (a) and coupled (b) 13 C NMR spectra of Cp₂Ti(SC₆H₅)C(CH₃)=N-2.6-(CH₃)₂C₆H₃ (CDCl₃; TMS; -20°C; solvent peaks are omitted).

TABLE 3

TABLE 4

Compound	solvent; added	D-inco					
		CH4	CH3D	CH ₂ D ₂	CD ₃ H	CD4	
(C ₅ H ₅) ₂ TiCH ₃	ether	100					
(C ₅ H ₅) ₂ TiCH ₃	ether-d ₁₀	100					
(C ₅ H ₅) ₂ TiCD ₃	ether				100		
(C ₅ D ₅) ₂ TiCD ₃ b	ether			11	66	23	•
(C ₅ H ₅) ₂ TiCH ₃	ether; THF-d ₈	100					
(C ₅ H ₅) ₂ TiCD ₃	ether; THF-d ₈				100		

DEUTERIUM CONTENT OF THE METHANE OBTAINED F	FROM THERMAL DECOMPOSITION
OF (C5H5)2TiCH3 AND SPECIFICALLY DEUTERIATED A	NALOGUES UNDER Ar

^a From peak ratio in mass spectrum at 15.5 eV (100°C). ^b Cp ligands are 89% deuteriated.

with formation of methyl radicals is not likely. In order to obtain more insight in the thermal decomposition pathway, and to find the source of the hydrogen for the methane formation, the CH_3 and Cp groups of the starting material Cp_2 -TiCH₃ and also the solvent ether were (separately) deuteriated and the incorporation of D in the methane measured (Table 4). Decomposition of $(C_5H_5)_2$ Ti- CD_3 in ether results in the formation of pure CD_3H and no other methanes such as CD_2H_2 or CD_4 . This clearly shows that the starting material is a Ti-methyl compound and not a Ti-methylene species, which upon decomposition would produce CD_2H_2 . Moreover, the decomposition temperature of Cp_2TiCD_3 does not differ from that of Cp_2TiCH_3 ($-50^{\circ}C$ at 0.1 M), which indicates a comparable activation energy for the decomposition process of the two compounds. This leads to the conclusion that a methyl C—H bond rupture is not the ratedetermining step of the decomposition of Cp_2TiCH_3 . Replacement of ether by ether- d_{10} as a solvent gives no D incorporation in the product methane, and again no change in the decomposition temperature is observed, which means that the solvent (ether) is not involved in the rate determining step (a similar observation was made for the photochemical decomposition of $Cp_2Ti(CH_3)_2$ [16]). For the same reason we conclude that THF, although it has a markedly stabilizing effect on Cp_2TiCH_3 , does not participate in its decomposition.

As neither the methyl group nor the solvent ether are involved in the decomposition process, the only hydrogen sources can be the Cp groups. It is concluded that Cp₂TiCH₃ decomposes exclusively with abstraction of cyclopentadienyl protons by the methyl group to form methane. Concerning the question of whether this process is intra- or inter-molecular, it must be noted that the decomposition temperature is concentration dependent (higher thermal stability at lower concentrations) which suggests an inter molecular decomposition process. The fact that the Cp groups are the exclusive proton donors explains the observed kinetic isotope effect in the decomposition process of $(C_5D_5)_2$ Ti-CD₃. This compound decomposes above about -30° C ($(C_5H_5)_2$ TiCH₃ at -50° C) with formation not only of CD₄ but of CH₂D₂ (11%), CHD₃ (66%) *

^{*} Since the Cp ligands in the compound $(C_5D_5)_2$ TiCD₃ are only 89% deuteriated the non-deuteriated part of these ligands can be also involved in the CHD₃ formation.

Solvent	Atmosphere	CpTiCl ₃ (%)	Cp ₂ TiCl ₂ (%)	"C ₁₀ H9TiCl2" (%)
ether	Ar	12	26	52
ether	N ₂	21	63	12
ether + THF	Ar	7	27	58
ether + THF	N ₂	10	85	traces

PRODUCT FORMATION IN HCI/ETHER REACTIONS OF DECOMPOSED REACTION MIXTURES OF Cp_TiCH_3 UNDER VARIOUS CONDITIONS

and CD_4 (23%). Obviously the replacement of cyclopentadienyl hydrogens by deuterium changes the activation energy of the rate determining step of the decomposition, which means that other decomposition pathways, with lower activation energies, are introduced (similar observations have been made in the decomposition of $(C_5H_5)_2Ti(CD_3)_2$ and $(C_5D_5)_2Ti(CD_3)_2$ [17]). The formation of CH_2D_2 indicates that C-D bond rupture in the methyl group, with formation of Ti-methylene species, is one of the processes that is now more involved. These observations indicate that there are only very small differences in activation energies between the various reaction possibilities and this is possibly the reason for the large number of rather conflicting data on the decomposition of low valent Ti compounds.

The Ti containing residue formed upon decomposition of Cp_2TiCH_3 , was not studied in detail, but it may be expected to posess a highly unsaturated character, probably with $(\eta^1 - \eta^5)$ bridging C_5H_4 groups or a fulvalene type structure; it may well be a mixture. Therefore, it might show interesting activating properties towards certain donor molecules. Indeed, as is reported below, it seems to be an active catalyst in isomerisation and hydrogenation reactions of olefins and acetylenes.

If the dark brown decomposition residue of Cp_2TiCH_3 is treated with an excess of HCl/ether at -78°C three compounds are formed: CpTiCl₃, Cp₂TiCl₂ and "C10HoTiCl2" [18], whereas 0.92 moles of H2/Ti are evolved. The formation of "C₁₀H₉TiCl₂" indicates that $(\eta^1 - \eta^5)$ bridging Cp groups or fulvalene type ligands are present in the original residue. Table 5 shows the yields of the compounds formed under various conditions. If the decomposition is carried out under Ar, " $C_{10}H_{0}$ TiCl₂" is formed as the major product (52%). Addition of THF to the original reaction mixture under Ar (which has a stabilizing effect) does not affect the product formation to a great extent. However, if the decomposition is carried out in ether under N_2 (at $-80^{\circ}C$ a dark blue colour characteristic of a binuclear Ti dinitrogen complex is observed) Cp₂TiCl₂ (63%) is formed as the major product after HCl/ether reaction. Moreover, 0.20 moles of NH_3/Ti and 0.02 moles of N_2H_4/Ti are obtained after acidolysis. For this nitrogen reduction 0.68 electrons are necessary. Addition of THF to the original reaction mixture under N2 yields even more Cp2TiCl2 (85%), and reversed amounts of reduced nitrogen compounds. viz. 0.06 moles NH₃/Ti and 0.11 moles N₂H₄/Ti, amounts which correspond to 0.62 electrons/Ti. Studies of the mechanism of this nitrogen-reducing reaction are in progress.

Catalytic aspects

Cp₂TiCH₃ is a very interesting compound in relation to Ziegler-Natta catalysis and also homogeneous isomerisation and hydrogenation catalysis. It proves to be a good precursor of active catalysts in both homogeneous isomerisation and hydrogenation of olefins and acetylenes. Two systems derived from Cp₂-TiCH₃ were investigated. The first is obtained by reaction of Cp₂TiCH₃ with H₂. It is active in *cis-trans* isomerisation of olefins, conversion of terminal olefins into internal olefins and conversion of non-conjugated dienes into conjugated dienes. At a substrate-to-catalyst ratio of 200, 1,5 cyclooctandiene for instance is completely converted into 1,3 cyclooctadiene in 25 minutes at 20° C. The system is also active in hydrogenation of terminal and internal olefins, dienes and internal acetylenes. At a substrate-to-catalyst ratio of 200, 1-hexene is hydrogenated to hexane completely in 8 minutes, at 20° C and a hydrogen pressure of 1 atm. The other system studied is that obtained from thermal decomposition of Cp₂TiCH₃. This system, however, is less active than the first. Details of mechanistic aspects of these catalysed processes will be reported elsewhere.

Experimental Part

All experiments were carried out under argon unless otherwise stated. Solvents were distilled from benzophenoneketylsodium under nitrogen; 2,6 xylylisocyanide was prepared according to ref. 19.

CD₃Li was prepared according to ref. 20, and $(C_5D_5)_2$ TiCl₂ according to ref. 21. Elemental analyses were performed in the Microanalytical Department of this University under the supervision of Mr. A.F. Hamminga. IR spectra were measured on a JASCO-IRA-2 spectrophotometer (KBr/Nujol). ¹H NMR spectra were recorded on a Perkin-Elmer R-24B spectrometer; ¹³C NMR spectra were recorded by Dr. P.B.J. Driessen on a Varian XL-100 spectrometer. The EPR spectra were recorded on a Varian E3X-band EPR spectrometer. The melting points and decomposition temperatures of solids were determined by differential thermal analysis (heating rate 1.5° C/min). Mass spectra were obtained on an AEI-902 spectrometer normally using an ionizing voltage of 70 eV; they were taken by Mr. A. Kiewiet. For methane characterization an ionizing voltage of 15.5 eV was used in order to minimize fragmentation. A pure sample of CD₃H run at 15.5 eV (100°C) gives ion ratios for m/e 19 : 18 : 17 : 16 of 10 : 1 : 0 : 0 in comparison with 10 : 3 : 4 : 1 obtained at 70 eV.

Synthesis of $(C_5H_5)_2TiCH_3$

To a suspension of 1.00 g of Cp_2TiCl_2 (4.0 mmol) in 30 ml of ether a solution of 4.0 mmol of i-PrMgCl in ether was added dropwise at room temperature during 15 minutes. After 1 hour the resulting green suspension of $(Cp_2TiCl)_2$ was cooled to $-78^{\circ}C$ and 4.0 mmol of CH_3Li in ether were added during 10 minutes. After 15 minutes at $-78^{\circ}C$ the reaction was complete, and a green solution of $(C_5H_5)_2TiCH_3$ had formed. This solution was used in the experiments described below. In the decomposition studies the solution was warmed to room temperature, and this finally yielded a dark brown solution with evolution of methane.

Synthesis of $(C_5H_5)_2TiCD_3$ and $(C_5D_5)_2TiCD_3$

These products were prepared in essentially the way described for $(C_5H_5)_2$ Ti-CH₃ above starting from $(C_5H_5)_2$ TiCl₂ or $(C_5D_5)_2$ TiCl₂; reduction with i-PrMgCl in ether and reaction with CD₃Li in ether.

HCl and DCl/ether reactions

The mixture to be oxidized was cooled to -78° C and a threefold excess of HCl/ether was added. After slowly warming to room temperature, the solvent (ether) was decanted and the residue extracted with n-pentane. Evaporation of the ether-pentane layers yielded CpTiCl₃ which was identified by IR. The total yield was estimated from the total Ti content of the ether-pentane layers. Cp₂TiCl₂ was extracted from the residue with dichloromethane and determined spectrophotochemically. After washing with 1.0 *M* HCl the green compound "C₁₀H₉TiCl₂" was left. If applicable, the HCl solutions were analyzed for NH₃ and N₂H₄.

Preparation of $Cp_2TiC(CH_3)=N-2, 6-(CH_3)_2C_6H_3$

To a solution of 4.00 mmol of Cp_2TiCH_3 in 30 ml of ether at $-78^{\circ}C$ 4.00 mmol of 2,6 xylylisocyanide in 10 ml of ether were added during 10 minutes. The purple mixture was slowly warmed to room temperature (2 h) and subsequently stirred for 15 hours. The resulting brown-purple solution was evaporated to dryness and extracted with 20 ml of n-pentane. On cooling the n-pentane extract to $-78^{\circ}C$ a purple oily product separated (possibly polymeric). The red-brown mother liquor was decanted, concentrated to about the half of the original volume and cooled to $-78^{\circ}C$, which gave red-brown crystals of $Cp_2TiC(CH_3)=N-2,6(CH_3)_2C_6H_3$ (0.40 mmol; 10%). The product is very airsensitive and readily soluble in the common organic solvents.

Preparation of $Cp_2Ti(CS_6H_5)C(CH_3)=N-2,6-(CH_3)_2C_6H_3$

To a solution of 0.70 mmol of $Cp_2TiC(CH_3)=N-2,6-(CH_3)_2C_6H_3$ in 10 ml of n-pentane a solution of 0.35 mmol of $C_6H_5SSC_6H_5$ in 10 ml of n-pentane was added during 10 minutes at $-78^{\circ}C$. On warming to room temperature (2 h) a yellow precipitate of $Cp_2Ti(SC_6H_5)C(CH_3)=N-2,6-(CH_3)_2C_6H_3$ formed. After several washings with n-pentane and recrystallization from ether the pure compound was isolated (0.25 mmol; 36%).

Preparation of $Cp_2Ti(I)C(CH_3)=N-2,6-(CH_3)_2C_6H_3$

To a solution of 0.70 mmol of $Cp_2TiC(CH_3)=N-2,6-(CH_3)_2C_6H_3$ in 10 ml of n-pentane a solution of 0.35 mmol of I_2 in 15 ml of n-pentane was added during 10 minutes at -78° C. On warming to room temperature (2 h) a yellow precipitate of $Cp_2Ti(I)C(CH_3)=N-2,6-(CH_3)_2C_6H_3$ formed. After several washings with n-pentane the compound was isolated (0.57 mmol; 81%), but it could not be obtained sufficiently pure. The compound is insoluble in aliphatic/hydrocarbons, ether, THF and benzene, but readily soluble in acetone or acetonitrile.

Reaction of Cp_2TiCH_3 with CS_2

To a solution of 4.00 mmol of Cp_2TiCH_3 in 30 ml of ether at $-78^{\circ}C$ 4.00 mmol of CS_2 were added. The resulting dark green solution was warmed to

room temperature (2 h), during which the colour slowly changed to light brown. After 3 hours at room temperature the mixture was evaporated to dryness and extracted with 30 ml of n-pentane. Upon cooling the yellow n-pentane extract to -78° C, yellow needles of Cp₂Ti(CH₃)₂ separated (yield 1.68 mmol, 84%; identification by IR and ¹H NMR). Except for Mg and Li salts the residue contains only pale red Cp₂TiCS₂ (IR [4]). Because of its very low solubility in the common organic solvents this compound could not be purified.

Acknowledgements

The authors thank Dr. H.A do Liesdo Meijer and Pref. Dr. F. Jellinek for stimulating discussions. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

- 1 J.H. Teuben, J. Organometal. Chem., 57 (1973) 159.
- 2 (a) E.J.M. de Boer and J.H. Teuben, J. Organometal. Chem., 140 (1977) 41; (b) E.J.M. de Boer and J.H. Teuben, J. Organometal. Chem., 153 (1978) 53.
- 3 E.J.M. de Boer and J.H. Teuben, J. Organometal. Chem., 166 (1979) 193.
- 4 E.J.M. de Boer, Thesis, Groningen, March 1979.
- 5 J.H. Teuben and H.J. de Liefde Meijer, J. Organometal. Chem., 46 (1972) 313.
- 6 F.W. van der Weij, H. Scholtens and J.H. Teuben, J. Organometal. Chem., 127 (1977) 299.
- 7 T. Chivers and E.D. Ibrahim, J. Organometal. Chem., 77 (1974) 241.
- 8 T. Chivers and E.D. Ibrahim, Can. J. Chem., 51 (1973) 815.
- 9 E. Samuel, P. Maillard and C. Gianotti, J. Organometal. Chem., 142 (1977) 289.
- 10 H.H. Brintzinger, J. Amer. Chem. Soc., 89 (1967) 6871.
- 11 J. Holton, M.F. Lappert, D.G.H. Ballard, R. Pearce, J.L. Atwood and W.E. Hunter, J. Chem. Soc. Datton, (1979) 45.
- 12 E. Klei and J.H. Teuben, J. Chem. Soc. Chem. Commun., (1978) 659.
- 13 J.L. Atwood, G.K. Barker, J. Holton, W.E. Hunter, M.F. Lappert and R. Pearce, J. Amer. Chem. Soc., 99 (1977) 6645.
- 14 M.L.H. Green and C.R. Lucas, J. Organometal. Chem., 73 (1974) 259.
- 15 M. Herberhold, M. Süss-Fink and C.G. Kreiter, Angew. Chem., 89 (1977) 191.
- 16 C.H. Bamford, R.J. Puddephatt and D.M. Slater, J. Organometal. Chem., 159 (1978) C31.
- 17 M.D. Rausch, W.H. Boon and H.G. Alt, J. Organometal. Chem., 141 (1977) 299.
- 18 J.J. Salzmann and P. Mosimann, Helv. Chim. Acta, 50 (1967) 1831.
- 19 T. Shingaki and M. Takebayashi, Bull. Chem. Soc. Japan, 36 (1963) 617.
- 20 H. Gilman, E.A. Zoellner and W.M. Selby, J. Amer. Chem. Soc., 55 (1933) 1252.
- 21 H.A. Martin, M. van Gorkom and R.O. de Jongh, J. Organometal. Chem., 36 (1972) 93.